2014年,百度、腾讯、阿里等大互联网公司针对自身的平台用户提供数据分析业务。国内金融、环保、交通、医疗等行业的数据分析应用也逐渐开始。在安防领域,视频监控对大数据的依赖性也日益明显,期待存储量更大、算法检测识别准确率更高、视频画面更清晰的视频数据技术。今年是大数据的“落地年“,而在这样的形势下,视频监控将受到怎样的影响?
大数据迎来“落地年”
作为时下最火热的IT行业词汇之一,大数据近年来成为各界关注的一大热点。一方面,网民数量不断增加;另一方面,以物联网和智能移动终端等为代表的联网设备数量飞速增长,使得人均网络接入带宽和流量也迅速提升。据相关机构预测,全球新产生数据年增40%,即信息总量每两年就可以翻番。
大数据技术日益为各行各业所倚重。在国内资本市场,许多上市公司也纷纷看中大数据这一新兴市场,争相投资布局。近期,中科云网、东方国信、朗玛信息等上市企业纷纷宣布进军大数据领域。
中国通信学会副理事长兼秘书长张新生表示,通过这几年的发展,大数据在国内已经从炒作期进入了积极探索和应用发展初期,初步形成了以数据采集、整合分析等技术为支撑的产业生态。
大数据对监控数据处理的价值
大数据在对安防数据处理价值上主要体现在以下几个方面:
一、数据应用效率不断提升。通过智能分析技术、大数据技术,能够使视频数据的应用效率不断提升,解决以往应用效率低下的问题。应用效率的提升能够使视频数据产生更大的价值。
二、数据深度应用。数据的深度应用能够体现大数据的真正价值,而这也更能提升安防系统的整体实力,使视频数据的边缘地位向核心地位靠拢,使安防行业的竞争力得到提升。
三、体制及标准的完善。标准和体制的完善能够进一步促进大数据的发展,而掌握标准的安防企业将会有更强大的话语权。
视频监控大数据处理仍然面临三大挑战
目前的视频系统大数据应用仍然面临三大技术挑战,可以概括为“存不下”、“找不到”、“看不清”三个方面。这三大挑战在一定程度上反映出当前视频大数据处理领域存在的主要问题,同时也对视频大数据处理技术提出了更高的要求。
1.“存不下”主要体现在视频压缩编解码性能的限制
随着数字视频应用产业链的快速发展,政府、学校、社区、民用以及网络终端所产生的海量视频向传统视频编码标准发出宣战。存储的视频数量不断加大就需要更大程度地提高编解码效率,提高视频压缩率,从而降低存储空间。网络化进程的加快也要求编码后的视频在快速、便捷传输的同时保证解码还原的视频质量。
视频压缩也制约着智能视频领域的发展。很多情况下我们要求降低解码后的视频损耗,比如多媒体视频认证领域,视频的无损还原是提高算法判断准确度的先决条件,只有控制在一个合理的损耗范围内,它才能提高视频篡改提示的准确度。因此随着视频的网络化、高清化、智能化时代的来临,领先新一代视频编码标准,超越新的技术框架和编码性能,才能在城市级视频应用领域中取得核心的主导地位。
2.“找不到”主要体现为智能视频监控领域中的算法检测识别准确率的问题
目前的视频监控方法只能在非常简单的环境下聚焦少量目标,检测、识别、跟踪性能还无法达到一个较高的水准,多数软件都存在场景、环境的限制,例如在简单、纯净的场景中,检测目标背景与前景差别较大时,检测结果较为准确;而在一些人流量密度大的复杂场景中,如地铁、车站、商场,监视成千上万个个体时,准确地识别、跟踪、检测则是一项非常艰巨的任务。
同时算法检测会受到光线、颜色、化妆、摄像机硬件误差及精密度等一系列的问题影响,因此在低端智能与真正的人工智能之间还存在一个较大的鸿沟,它需要计算机处理能力及处理速度的提升。我们需要的是一种接近人类,甚至高于人类的识别准确率,并且能够检测区分人群行为,预测潜在的群体灾难。这不仅仅在智能视频领域,而且从多领域的交叉融合角度,智能分析的研发与探索对机器人的发展也能够起到积极的推进作用。
以往大多数城市级安防监控摄像头录制的视频画面都较为模糊,刑侦破案分析的依据仅仅为模糊画面动作方向,甚至是模糊的像素点,对具体人物细节的描述不清晰导致刑侦难度加大,辅助公安机关研判的力度不强。在智能监控领域,传统的智能分析方法较多的是在CIF格式下进行算法处理,这样处理速度更易达到实时。当传统视频向高清视频转换过渡时需要多重处理策略相结合进行算法分析,这需要持续的研发革新。在从标清向高清的门槛跨越过程中,网络带宽的承载力、视频的显示、存储等问题也不断显现。
结语
2014年是大数据的“落地年”,意味着大数据这艘大船已经起航,未来它也一定可以乘风破浪,扬帆远航。而视频监控作为船上的一名“乘客”,也一定可以感受到大数据发展所带来的方便与智能,并与之携手共进,创造安防行业的美好未来。